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LE’lTER TO THE EDITOR 

On the probability density interpretation of smoothed 
Wigner functions 

Marcus A M de Aguiar and Alfred0 M Ozorio de Almeida 
Instituto de Fisica, UNICAMP, Campinas, 13081, Sao Paulo, Brazil 

Abstract. It has been conjectured that averages of the Wigner function over phase space 
volumes, larger than those of minimum uncertainty, are always positive. This is true for 
Gaussian averaging, so that the Husimi distribution is positive. However, we provide a 
specific counterexample for the averaging with a discontinuous hat function. The analysis 
of the specific system of a one-dimensional particle in a box also elucidates the respective 
advantages of the Wigner and the Husimi functions for the study of the semiclassical limit. 

The falsification of the averaging conjecture is shown not to depend on the discon- 
tinuities of the hat function, by considering the latter as the limit of a sequence of analytic 
functions. 

There are many problems concerning the semiclassical limit of quantum mechanics 
that still remain open. One of the difficulties in comparing classical and quantal 
properties is that a classical solution is best portrayed as a phase-space trajectory, 
whereas the usual quantal solution takes the form of a wavefunction in coordinates 
( q  1 I)) or momenta ( p  I I)). The uncertainty principle forbids the knowledge of both q 
snd p simultaneously. 

Nonetheless the Wigner function [ 11 

W(q,P)=(2.rrh)-L 1 ( ( I+y/2/~)(I)14-Y/2)exP(ipy)/h)  dy (1) 

j- W(q9 PI dP = l(4 I I))/* 

(where L is the number of freedoms) does provide a phase-space ‘view’ of the quantum 
state, which projects into the correct marginal probability densities: 

and j- W(q, P) dq = I(P I +)I*. (2) 

The problem with trying to interpret the Wigner function as a phase-space probability 
density is that although W ( q , p )  is real, it is necessarily negative in some regions of 
phase space [2]. Even so, the uncertainty principle may be invoked to wash out the 
phase-space structure in volumes smaller than ( 2 ~ ~ 5 ) ~ .  The conjecture that the averaged 
value of the Wigner function in any such volume would yield a positive value, recovers 
then the desired interpretation [3]. 

Husimi [4] showed that a Gaussian smoothing of W(q,p) is indeed positive and 
hence suitable for a probability density. In fact we may interpret the resulting Husimi 
function as the wave intensity in the coherent state representation [ 5 ] .  However this 
result does not settle the ‘averaging conjecture’, since it depends on the specific 
properties of the smoothing function. 

It should be noticed that the requirement on smoothed Wigner functions to be both 
real and positive implies that they cannot have the correct marginals as in (2) [ l ,  61. 
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L1026 Letter to the Editor 

This is a price one has to pay to have the probability interpretation. Generalizations 
of the Wigner function with the correct marginals have been extensively studied [7] 
but those do not allow for a probability interpretation. 

In this letter we calculate and compare the Wigner and the Husimi functions for 
a very simple example: a particle in a one-dimensional box. As a result we obtain a 
transparent counterexample to the ‘averaging conjecture’: the Wigner function averaged 
over suitably chosen areas larger than 27rh can be negative. This shows that Gaussian 
smoothing is essential for guaranteeing positiveness; that is, the contribution of the 
Gaussian tail is what ensures a positive result. 

The problem we are going to study is defined by the potential function 
0 if - d / 2 < x < d / 2  
a3 otherwise. 

V ( x )  = 

The even parity stationary solutions of the Schrodinger equation are 

*(x) = 6 7) 
where 

( 2 N +  1)Th 
d ’  Po = ( 5 )  

The Wigner function defined by (1) can be computed immediately to give [8] 

W(q, p)  = c, + c- + CO ( 6 )  
where 

and 

Figure 1 shows the behaviour of these three functions at q = 0. It is clear that in the 
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Figure 1. The three functions C, and CO at q = 0. 
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limit h + 0, we get two delta-functions at p = *pa, plus an extra non-classical delta at 
p = 0 modulated by 2 cos(2poq/ h ) .  The amplitude of this third delta oscillates increas- 
ingly as A + 0, as will the value of W(q,  p )  at any point where p # *pa. 

The oscillations also increase as pa (or N )  becomes large. Figure 2 shows contour 
plots of the positive ( a )  and negative (b)  parts of W (  q, p )  for three different values 
of N and h = 1. Note the intricate weaving of the positive with the negative parts, and 
the fact that the non-classical maxima at p = 0 are twice as large as the maxima at 
P = *PO. 

Next we compute the Husimi distribution, defined by [5] 

1 
H ( q ,  p )  =% [ dq’ dp’ W q ’ ,  p ’ )  exp[-(q - q’I2/2b2- ( p  -p’)2b2/2h2] 

+(x) e ~ p [ - ( q - x ) ~ / 4 b ~ - i p ( x - q / 2 ) ]  dx . (9) I 2  d / 2  1 - 
- 1(2rb2)”’ [ - d / 2  

Instead of presenting the full analytical result in terms of error functions, we replace 
the limits in (9) by *a, thus obtaining 

+2  exp[-(p2+p~)b2/h2]  cos 2qp0/h). (10) 

For b<< d, this will only be a poor approximation near the edges * d / 2 ,  but in this 
region the wavefunction goes to zero anyway. Notice that we still have three terms 
here (compare with equation ( 6 ) )  but now H ( q ,  p )  3 0 with only isolated zeros at p = 0 
and q = rA(2kS  1)/2p0. Contour plots of H ( q ,  p )  are shown in figure 3 for N = 1, 
h = 1 and different values of b. 

Much interest has recently been devoted to the semiclassical limit of both Wigner 
and Husimi functions of chaotic and non-integrable systems [9] and the question of 
which would be most appropriate for specific purposes has been raised. It is readily 
seen that the underlying classical motion is displayed much more clearly by the Husimi 
function if the parameter b is conveniently chosen. If b is too small compared with 
typical oscillations, the Gaussian average will include non-local features leading to 
very non-classical structures, as can be seen in figure 3 ( c ) .  

Now we come to the main aim of this letter, which is construct a hat function 
defined by a rectangle of area greater than 2rA, where the averaged value of W(q, p )  
is negative. We start by choosing pa large enough so as to separate the contribution 
to W(q,  p )  of the three peaks in (6) (actually it will be enough to take N2 1 in ( 5 ) ) .  
Next, we calculate the average of the Wigner functio, in the rectangle (-6 < q s 6, 
- E < ~ < E )  with 

E = 2rh /d .  (11) 
This choice of E ensures that the average values of C , ,  given by (7), will be negative 
and therefore 

w <  CO= (r dp)-’ sin(pd/h) cos(2poq/h). 

The average of the first term is clearly positive, since 

sin( p d /  h )  sin x 2 n f t / d  

- 2.8. I - 2 n h / d  p 
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Figure 3. Husimi function for N = I and ( a )  b = 1.571; ( 6 )  b = 1.178; ( c )  b =0.785; 
( d )  b = 0.524. 

Therefore, we just have to choose 6 such that 

j-: cos(2poq/ h )  dq = 
Po 

and 

d / 4 s  6 s d/2. 

< O  

These inequalities can easily be achieved for N 3 1 ! Therefore < 0 and ( 2 ~ ) ( 2 S )  b 

2rh .  The appropriate choice of 8 includes a single extra valley more than the number 
of humps in the cosine oscillation. These rectangles are shown in figure I (  b )  by full lines. 

We see from (IO) that the term corresponding to CO in the Husimi function can 
also be negative, but in this case we cannot make c+ negative as well. In fact they are 
always positive and large enough to overcome CO, yielding a positive final result. 
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(Notice that the terms in A are not the separate smoothing of the terms of W ( q , p ) ,  
but a complicated combination of them.) 

Now we finally show that the above result is not a consequence of the sharp cutoff 
presented by the hat function. To see this, consider the sequence of smooth (actually 
analytic) functions 

where A,  is determined by the condition 

fn(q-q’,p-p’) dq’dp’=4&6 J 
(notice that limn+m A, = 1. Clearly, this sequence approaches the hat function 
f ( q - q ’ , p - p ‘ )  as n+w. Let 

W,(q, p)  = dq’ dp’ W q ’ ,  P ’ l f n ( 4  - q‘, P -P’) J 
and 

w(q, p )  = J dq‘ dp‘ ~ q ’ ,  p ’ ) f ( q  - q’, P -P’). 

Then, the difference between and Wn is given by 

A, = 11 dq’ dP‘ W q ’ ,  P’)[.h - 4 ’ 9  P -P’) - f n ( q  - q‘, P -P?I 1 
2 
h s- 1 1 dq’ dp’(f(q’, P’) --f(4’, P’)) 1 

since [ l o ]  I W(q, p)I s 2 /  h. The remaining integral can be divided into four regions 
where estimates can be made: 

Region 1. 19’1 < 6 and lp’l< E.  

4(& + 8) 
I, = IR, dq’ dp’( 1 - f,) < 4 J,,’ dq’ J: dp’[ ( :)’, + ($)’“I = -. 2 n S 1  

Region 3. (4’1 > 6 and Ip’(< E .  

Region 4. 14’1 > S and E. 

And, therefore 

2 2 
h h A, <-IZ, - Z2 - 1 3  - Z41 <- ( I1  + Z2+ Z3+ 14) 
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since all I k > O .  So as n + m , h , + [ 8 ( 6 + ~ ) / h ] / n  and, if for a given point 
(q ,  p )  W (  q, p )  = -A, with A > 0 there exists N such that for n > N, W,(q, p )  < 0. This 
extends our counterexample to analytic smoothing functions. 

We conclude that it is necessary to make restrictions on the minimum uncertainty 
smoothing function, if we are to interpret the Wigner function as a phase-space 
probability density. Gaussian smoothing certainly belongs to this allowed class, but 
the positive property of Yusimi function is not trivial. 
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